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Comparison of PLS and kinetic models for a second-order reaction
as monitored using ultraviolet visible and mid-infrared spectroscopy

Antonio R. de Carvalho, Miguel del Nogal Sánchez, Jirut Wattoom, Richard G. Brereton∗

School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK

Received 17 December 2004; received in revised form 26 May 2005; accepted 15 July 2005
Available online 8 September 2005

Abstract

A second-order reaction between benzophenone and phenylhydrazine to give benzophenone phenylhydrazone was followed using UV/vis
and mid-infrared spectroscopic probes. Established kinetic (hard) and partial least squares (soft) modelling chemometrics methods were
applied to both datasets in order to compare the information acquired with each probe. To this purpose, an experimental design with 25
samples and a test set with 5 samples were used to build a partial least squares calibration model to predict the concentration profiles of the
compounds present in the reaction vessel. In addition, multivariate kinetic modelling was also performed on the spectroscopic data. Using a
g copic profile,
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uess of the rate constant, concentration profiles were estimated. The profiles are then used to calculate the estimated spectros
hich is compared to the data acquired experimentally. The residual is minimised and the rate constant estimated; this procedur
ntil convergence. A total of four profiles were obtained for each compound, corresponding to two sets of probes and two sets
he results were compared and discussed. It is shown that several different spectroscopic techniques can be used in reaction mo

ncreasing benefits in terms of information and interpretation of the results. The profiles obtained agreed well which was also de
hen comparing the different rate constants obtained.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Reaction monitoring using probes that can obtain spec-
roscopic data on-line as the reaction progresses has an
mportant role to play especially in process chemistry. Over
he past decade there has been a major expansion in NIR
near infrared) methods for reaction monitoring[1,2]. Tradi-
ionally, partial least squares (PLS) and related multivariate
ethods have been employed to determine the concentra-

ion of individual components from this on-line spectroscopic
ata, first developing a calibration model and then applying

t to the mixture data, in order to estimate change in con-
entrations of the reactants from the spectroscopic data[3],
specially to PLS in reaction monitoring and NIR[4].

∗ Corresponding author. Tel.: +44 1179287658; fax: +44 1179251295.
E-mail address: r.g.brereton@bris.ac.uk (R.G. Brereton).

However, over the last few years, a new generatio
probes in the mid-infrared (MIR), ultraviolet visible (UV/v
and Raman regions has been developed which promis
revolutionise reaction monitoring[5,6]. Coupled to this ar
new capabilities in analysis of the spectroscopic data u
multivariate kinetic models[7] which has been an especia
important growth point. The advantage of kinetic mode
that they can incorporate extra information about the rea
that is often known in advance, for example the order o
reaction, and also that they do not require calibration s
dards. This has the advantage that there is no requireme
calibration using pure compounds: it is sometimes ha
perform calibration especially if the conditions under wh
a reaction is performed are unstable. Mixing the calibra
standards under reaction conditions will lead to mixtures
do not have a long shelf life, for obvious reasons. Bec
spectra change with pH or temperature or most factors
catalyze a reaction[8], it is not always easy to develop a P
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model under reaction conditions. Kinetics models, in con-
trast, depend on having a good knowledge of the reaction
mechanism, often requiring one step reactions without sig-
nificant intermediates or side products, and if the reaction is
more than first order, it is necessary to know the concentra-
tion of starting materials. We can show that if some of this
information is not accurately known this can result in poor
predictions using kinetics methods[9].

We have previously studied the second-order reaction of
benzophenone and phenylhydrazine[10,11] but using only
kinetics models and a UV/vis probe. In analytical chemistry,
it is often important to validate methods using independent
approaches. One advance is to be able to monitor a reaction
simultaneously using more than one probe, in this paper we
report a reaction monitored using both a MIR and a UV/vis
probe. Both have their advantages and disadvantages. MIR
is a useful approach because compounds often show fairly
characteristic spectral peaks that can be identified, but the
MIR probe has a lower signal to noise ratio and individual
spectra need to be recorded over a longer time period to obtain
adequate intensity. Comparing results from both instruments
is an important confirmation that our predictions are correct.

PLS models have been used for reaction monitoring
[12–17], in some cases to obtain rate constants, but in many
cases primarily to obtain reaction profiles, without kinetic
information. The problem with PLS models in the context
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If the concentrations of two components in a training set
are completely correlated, it is not possible to know whether
a change in spectral characteristic results from a change in
concentration of one or the other component. In addition, if
a future sample arises with a high concentration for the first
compound and low concentration for the second, calibration
software will give an incorrect answer for the concentra-
tion of each component[19]. In mixture experiments[20,21]
it is desirable that the compounds be uniformly distributed
over the space. Features such as orthogonality are especially
important to have a good model.

This paper employs a partial factorial design for five con-
centration levels (l= 5). Mutually orthogonal designs are only
possible if the number of concentration levels is a prime num-
ber or a power of a prime number. The design requires at least
l2 experiments (25 experiments) to study a mixture[19,21].
After numbering the levels from−2 (lowest) to 2 (highest) the
complete design was obtained using what is often described
as a cyclic generator (−2, 1, 2, 1,−2), a repeater of 0 and a
difference vector (0 2 3 1)[20]. In this type of design, there is
no correlation between any concentrations of the compounds;
hence, the correlation coefficient is zero.

2.2. Principal component analysis
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f this paper, is that the reaction is catalyzed by using
hich also has a significant influence on spectral chara

stics. Therefore, PLS calibration sets need to be reco
mmediately after the acid is added. For the MIR instrum
ecause about 5 min are required for recording a spec
small amount of reaction will occur during the calibrat
owever, the errors introduced by this means are likely t

ess than the errors introduced if one performs the cal
ion in the absence of acid and then applies this model t
eaction which includes acid.

This paper reports the results of four types of anal
amely two probes (MIR and UV/vis) and two types of d
nalysis (kinetics and PLS).

. Theory

.1. Experimental design for PLS calibration

In order to obtain a suitable calibration set we use
ematic experimental designs. Whereas two level de
re valuable for exploratory purposes and can some
esult in useful models, in many areas of chemistry, s
s calibration, it is desirable to have several levels, e
ially in the case of mixture spectra[18]. A special clas
f design has been developed for calibration. One o
reatest problems involved[19] in the determination of mu

icomponent systems is the generation of a suitable tra
et able to predict any combination of concentrations o
ompounds.
,

Principal components analysis (PCA) is a technique
to discover the significant information contained in la
amounts of multivariate data, and to accurately represe
data with just a few key components.

The data in this work is presented as a matrixX. Each
row in the matrix represents the spectrum at one poi
time. Each column represents the absorbance at a given
length.

The data matrixX (dimensionsI × J) can be decompos
[22] into a product of two matrices, as follows:

X = TP + E (1)

TheT matrix contains the scores ofI objects onK principal
components. TheP matrix is a square matrix and conta
the loadings ofJ variables on theK principal components.E
is the error matrix.

If the original data matrix is dimensionI × J, no more
thanJ principal components can be calculated ifJ ≤ I. PC1
represents the direction in the data, containing the la
variation. PC2 is orthogonal to PC1 and represents the d
tion of the largest residual variation around PC1 and so
These will contain less and less variation and therefore
information[18]. The first scores vector and the first loadi
vector are often called the eigenvectors of the first princ
component. Each successive component is characteriz
a pair of eigenvectors.

2.3. Partial least squares

There are four steps in the application of PLS:
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1. A calibration design is built with a training set, in this
paper this consisted of 25 samples at 5 different concen-
tration levels for each component.

2. The optimum number of PLS components is selected
using cross-validation.

3. The prediction capacity of this model is assessed with an
additional group of samples called a test set, five in this
paper.

4. The model is then applied to predict the concentration
profiles during the reaction period.

A detailed description is presented below.
Partial least squares (PLS) is a major regression technique

for multivariate data[18,23–25]. PLS has been applied to
many fields in science with great success. One important fea-
ture of PLS is that it takes into account errors in both the
concentration estimates and spectra.

In this paper PLS1 was used to perform the calculations
[18]. Two sets of models are obtained as follows:

X = TP + E, c = Tq + f (2)

whereq has analogies with a loadings vector, although is
not normalized. In the first equation, the product ofT and
P approximates to the spectral dataset obtained through the
experimental work and in the second equation product ofT
andq approximates the concentration estimates. The com-
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The number of degrees of freedom equalsI − K whereK is
the number of PLS components.

The cross-validation error, RMSECV, is used when per-
forming leave one out cross-validation, the predictions are
of the samples left out, and the number of degrees of free-
dom equalsI. This error is used for the determination of the
optimum number of PLS components, and a minimum in the
RMSECV is taken to correspond to this optimum.

The test set or prediction error, RMSEP is calculated on
an independent test set and is used to determine the quality
of performance of the model. An independent test set of five
samples (as described below) was used to determine this error.

Once the PLS model has been applied to the training set
and validated using the test set, and demonstrated to have
good predictive abilities, it can be applied to datasets where
the concentration profiles are unknown, such as reaction data
as described in this paper.

2.4. Kinetic modelling

In previous papers we have reported the reaction between
benzophenone and phenylhydrazine[10,11]and modeled this
as a second-order reaction, as expected from its chemistry.
Although the rate of reaction will also be influenced by acid
concentration, providing the acid is significantly in excess
(as is the case in this study), the kinetics will approximate
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on matrix in both equations isT. PLS was performed o
ncentred data in this study.

It is important to determine how many significant P
omponents are necessary using cross-validation. The
f the method[19] is that the predictive ability of a mod
reated on part of a dataset can be tested out by how
t predicts the remainder of the data. Cross-validation
mployed as a method for determining how many com
ents characterize the data. A PLS multivariate calibra
odel was constructed with 25 training samples and

ross validation was used for the selection of the optim
umber of components (leave one out). The prediction ca

ty of this set was checked with an additional group of sam
hat had not been used in the construction of the model

Often the error[18] is reported as a root mean square e
RMSE):

=
√∑I

i=1(ci − ĉi)2

D
(3)

hereci is the added analyte concentration, ˆci the predicted
nalyte concentration, andD corresponds to the number
egrees of freedom. In addition to this absolute value,
ossible to use a relative value expressed as:

(%) = E

c̄
× 100 (4)

herec̄ is the average concentration in the data matrix.
There are three types of error that can be estimated.
The auto-predictive error, or calibration error, is calcula

n the training set, so that theE corresponds to the RMSE
o second order. Although it is possible to compare diffe
ate equations[26–28]whereas more complex models may
he data better, they do not necessarily describe the rea
ore accurately. In many practical cases empirical mo
re adequate, especially in areas such as industrial pr
onitoring.
Considering a second-order reaction, of the follow

ype:

+ V → W

It is assumed that no side reactions take place, that
re no intermediates and that are no impurities. The m
eaction in this paper has been carefully chosen to app
ate to these properties as the spectroscopy exhibits iso
oints throughout.

With these assumptions, it is possible to define this sy
sing Eq.(5):

dU

dt
= k[U ][V ] (5)

Integrating this equation, we can obtain three equa
hat relate to the evolution of each one of the compon
resent in the mixture. Eqs.(6)–(8)are obtained, where∆0
quals [V]0 − [U] 0 [27,28], andV is in excess:

U ]t = ∆0[U ]0
[V ]0 exp(k∆0t) − [U ]0

(6)

V ]t = [V ]0 − ([U ]0 − [U ]t) (7)

W ]t = [W ]0 + ([U ]0 − [U ]t) (8)
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If the initial concentrations are known, using an initial
guess for the value ofk, it is possible to compute the con-
centration profiles for the compounds present in the reac-
tion mixture. The initial guess should come from previous
knowledge of the reaction being studied or, in the case no
information is available a guess can be used. In this paper,
the initial guess ofk used assumed the reaction had reached
95% completion during the time it had been monitored. This
value is obtained from previous knowledge that the reaction
during the time it was monitored had nearly reached com-
pletion. For the dataset in study, the optimisation is quite
robust and even when considerable error is introduced to
the initial guess of the rate constant the same solution is
obtained.

Once the initial guess of the concentration profiles has
been established, it is necessary to optimize these profiles
based on the information contained in the dataset collected
during the reaction (matrixX). To this purpose, a non-linear
least squares fitting was used. This method consists of several
steps to complete the iterations and reach a solution. A least
squares step projects the spectraX into the space spanned by
C (concentration profiles) to give a matrix of the residuals,
R, as shown in Eq.(9) [29]:

R = X − (C′C)−1
C′X (9)
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2.5. Comparison of profiles

With the methods described in the previous section, con-
centration profiles are obtained for all the components present
in the reaction mixture. Since we are comparing two spectro-
scopic techniques and two modelling techniques, we obtain
four estimated profiles for each component.

Since the data is obtained from two different probes, which
do not necessarily acquire spectra at in the same point in
time, one has to interpolate the data acquired at a faster rate
to match the one acquired at a lower rate. To this purpose,
the time vector obtained from the MIR probe was used. That
same vector was also used to obtain discrete points with the
kinetic models that were then used in the comparison.

In order to assess the similarity of the reconstructed kinetic
profiles the following equation was used:

RMSE=
√∑I

i=1(c1i − c2i)2

I
(12)

wherec1 andc2 correspond to the two profiles that are being
compared.

3. Experimental
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The non-linear least-squares procedure[30] is used to
djust the rate constantsk and minimize the sum of squar
esiduals,

∑
r2
ij. These iterations are repeated until a s

ion is found that is within the limits of convergence that
efined beforehand, before starting the optimization pr
ure. In this case the Levenberg–Marquardt method was

or the optimization[31,32]. The algorithm can be thoug
f as a trust-region modification of the Gauss–Newton a
ithm. It finds the minimum of a functionF(x) that is a sum
f squares of non linear functions, as it can be seen in
10):

(x) = 1

2

m∑
i=1

[fi(x)]2 (10)

Let the Jacobian offi(x) be denotedJi(x), then the
evenberg–Marquardt method searches in the direc
iven by the solution to the equation

JT
k J + λkI)pk = −JT

k f k (11)

hereλk are nonnegative scalars. One of the properties o
ethod is that, for some scalarδ related toλk, the vectorpk

s the solution of the constrained sub problem of minimiz
|Jkp + fk||22/2 subject to||p||2 ≤ δ [32].

In the present case, a single solution to the proble
ossible, because there is a single global minimum. The
ergence process is dependant on the initial guess of th
onstant.
The reaction between benzophenone and phenylhydr
o give benzophenone phenylhydrazone was monit
sing two spectroscopic probes in the reaction vessel to

ect spectroscopic data simultaneously. PLS calibration
erformed on 25 three-component mixtures of these c
ounds under conditions similar to those in the reac
essel. Section3.2describes how the calibration dataset
onstructed and Section3.3the reaction conditions.

.1. Instrumentation

The data collection was done using a mid-infra
robe and an UV/vis probe. The SpectraProbe Linx
0ATR (SpectraProbe, Middlesex, UK) is a liquid ph
IR spectrometer that is capable of recording over
000–2000 cm−1 range. The spectral resolution of the de

or varies between 4 cm−1 at 1021 cm−1 and 16 cm−1 at
923 cm−1. The attenuated total reflectance (ATR) techn

s used to determine the liquid absorbances. It contains a
le bounce ATR crystal and is based around a 128 ele
yro-electric array. The compounds studied absorb m

n the 1651–1196 cm−1 region, so only this range was us
esulting in 56 spectral data points.

For the UV/vis probe, an ATR spectroscopic pr
Hellma, Müllheim, Germany) connected by fibre op
ables to an MCS500 UV/vis spectrometer (Zeiss, J
ermany) was used to record all spectra. The UV
robe was able to record a spectrum in the rang
00–650 nm. None of the compounds studied absorbed a
00 nm, and there were strong solvent absorptions at a
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Table 1
Levels and concentration data for the three compounds in the calibration set

No. Phenylhydrazine Benzophenone Benzophenone phenylhydrazone

Level Conc. Level Conc. Level Conc.

1 0 0.484 0 0.199 0 0.150
2 −2 0.161 −2 0.000 0 0.150
3 2 0.807 −2 0.000 −2 0.000
4 −1 0.323 2 0.397 −2 0.000
5 2 0.807 −1 0.099 2 0.299
6 0 0.484 2 0.397 −1 0.075
7 −1 0.323 0 0.199 2 0.299
8 −1 0.323 −1 0.099 0 0.150
9 1 0.645 −1 0.099 −1 0.075
10 2 0.807 1 0.298 −1 0.075
11 1 0.645 2 0.397 1 0.224
12 0 0.484 1 0.298 2 0.299
13 2 0.807 0 0.199 1 0.224
14 2 0.807 2 0.397 0 0.150
15 −2 0.161 2 0.397 2 0.299
16 1 0.645 −2 0.000 2 0.299
17 −2 0.161 1 0.298 −2 0.000
18 0 0.484 −2 0.000 1 0.224
19 1 0.645 0 0.199 −2 0.000
20 1 0.645 1 0.298 0 0.150
21 −1 0.323 1 0.298 1 0.224
22 −2 0.161 −1 0.099 1 0.224
23 −1 0.323 −2 0.000 −1 0.075
24 0 0.484 −1 0.099 −2 0.000
25 −2 0.161 0 0.199 −1 0.075

Conc.: molar concentration after adding the acid (2.878 M). Note that all calibration was performed after acid was added.

200 nm, so the spectra were only recorded in the range
220–400 nm inclusive at a 1 nm resolution, resulting in 181
data points. The path length of the UV/vis light in the probe
is ∼3�m; hence it can be used in solutions of usual reaction
concentrations.

3.2. PLS calibration and test mixture design

To obtain the calibration for both probes it was necessary
to have a sample of pure benzophenone phenylhydrazone.
This was achieved by performing the reaction in acetoni-
trile (Fisher Scientific, Laboratory Reagent Grade, UK) and
letting it continue after crystallization. A recrystallization
process was used to get the pure product. Purity was assessed
by HPLC and the product found to be more than 99% pure.

The experimental design used is illustrated inTable 1.
The different levels and concentrations in each sample for
the three compounds are presented in the table. Three stan-
dard solutions of benzophenone (1.985 M), phenylhydrazine
(3.581 M) and benzophenone phenylhydrazone (1.097 M)
were prepared by weighing out 18.270, 19.953 and 14.942 g
of the three compounds respectively and dissolving each in
50 mL of THF. From these, varying amounts were removed
in different proportions to a series of 10 mL volumetric flasks
to produce 25 mixtures with THF as the solvent. A 5 mL was
r acid
a ment
T both

probes. It is important to have these samples prepared only a
few s prior to recording the spectra since the addition of acid
catalyses the reaction.

The concentration after adding the acid (2.878 M) is shown
in Table 1. Cross validation was used to select the number of
PLS components for each of the components. A test-set with
five samples was used to investigate the performance of the
models created.Table 2shows the molar concentration used
for these five samples.

3.3. Reaction

The reaction studied involved the addition of phenylhy-
drazine to benzophenone to give benzophenone phenylhy-
drazone (seeFig. 1).

The reaction is suitable for monitoring via UV/vis and
MIR spectroscopy[10,11]. The reactants and the product
have prominent regions where they absorb in both of the

Table 2
Concentration data for the three compounds in the test set

No. Phenylhydrazine
(conc.)

Benzophenone
(conc.)

Benzophenone
phenylhydrazone (conc.)

1 0.645 0.397 0.150
2 0.484 0.298 0.224
3 0.161 0.199 0.299
4
5

C

emoved from each of the flasks and 1 mL glacial acetic
dded to produce a sample for spectroscopic measure
he solution was shaken and immediately analyzed by
.
0.807 0.000 0.075
0.323 0.099 0.000

onc.: molar concentration after adding the acid (2.878 M).
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Fig. 1. Reaction scheme between phenylhydrazine and benzophenone to
give benzophenone phenylhydrazone.

spectroscopic techniques used. Therefore, it is possible to
study the change in composition of reaction mixture by
monitoring the reaction with both probes. The data acquired
can be seen inFig. 2. The reaction occurs at a reasonable
rate and the data can be acquired relatively quickly. The pure
normalized UV/vis and MIR spectrum of a sample of each
compound is shown inFig. 3. As one can see the spectra

of the compounds overlap in most of the regions of greatest
absorbance. An important step will be to deconvolute the
signal obtained in this work.

The reaction was carried out using a molar ratio of
2.03:1 phenylhydrazine to benzophenone. 4.448 g (1.596 M)
of phenylhydrazine (Lancaster, 97%, UK) were accu-
rately weighed and transferred to a 25 mL volumetric flask
and made up with tetrahydrofuran (THF) (Fisher Scien-
tific, Laboratory Reagent Grade, UK). 3.686 g (0.801 M)
of benzophenone (Fluka, 99%, Switzerland) were accu-
rately weighed and the same procedure as above was
performed.

A three-necked round-bottomed flask was set up with the
necks of the flask fitted with a MIR probe, UV/vis probe and
overhead stirrer. An oil bath was used to control the temper-
ature, since the temperature is a very important factor in all
kinetic studies. The bath was heated to 25◦C. A 20 mL of

Fig. 2. Reaction spectra taken over time of the reaction w
Fig. 3. Normalized pure spectra o
ith both probes. The mark (*) shows the isosbestic points.
f the three reaction compounds.
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each of the two solutions were transferred into the round bot-
tomed flask and left to equilibrate. The mixture of reactants
was monitored by both probes, and it was confirmed that no
reaction occurred. When the mixture reached the required
reaction temperature, 8 mL of glacial acetic acid (Fisher Sci-
entific, Laboratory Reagent Grade, UK) was added. The acid
(2.878 M) works as the catalyst of the reaction, hence the
reaction only starts once the acid is added. Since there is no
reaction before this point, there are no changes in the spec-
tra so monitoring is only useful after the addition of acid.
There was a 15 s delay between when the acid was added
until the first spectrum was recorded to allow mixing of the
components present in the mixture. Spectra were recorded
every 60 s for UV/vis probe and every 5 min for MIR probe.
In the case of the MIR probe the longer time reflects the
need to obtain adequate signal to noise ratio. The UV/vis
probe co1lected 125 spectra, and last was measured 7455 s
after adding the acid. The MIR probe collected 36 spectra,
with data recorded until 10 955 s. The longer acquisition time
reflects the need to have enough information to use the meth-
ods presented in Section2. The MIR data set matrix contains
36 measurements of the reaction at different times (rows) and

56 variables (columns). The UV/vis data matrix has dimen-
sions 125× 181.

4. Results and discussion

4.1. Reaction spectra

The reaction was run and monitored at the same time
by both probes according to Section3. For UV/vis spec-
tra, changes of spectra can be understood by dividing
the wavelength in three groups. The absorption increases
for the first 18 variables (220–237 nm), then it decreases
until 277 nm and finally it increases again until 400 nm.
These regions are defined by two points where there is no
change in absorption throughout the duration of the reac-
tion (isosbestic points) and they are a good indication of
a reaction with no side products (Fig. 2). These points
will be lost if a change in reaction conditions occur, for
example crystallization of the benzophenone phenylhydra-
zone or changes in the temperature as the reaction pro-
gresses or presence of an intermediate. Spectra obtained
Fig. 4. PCA loadings on the raw data from the reaction obt
ained with UV/vis probe (a and b) and MIR probe (c and d).
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from the MIR probe also show the presence of an isosbestic
point.

4.2. Principal component analysis

The use of PCA gives an approximate idea of what is
occurring when the reaction is progressing. PCA was per-
formed on the raw data obtained from the reaction mea-
sured by both probes. The principal results are shown in
Figs. 4 and 5. The first PC relates to the total intensity of the
spectra. The loading plots for UV/vis and MIR data represent
a combination of three pure spectra for benzophenone phenyl-
hydrazone, benzophenone and phenylhydrazine.Fig. 4a and
c shows these combinations. One can see that they agree well
with the individual spectra for three compounds (Fig. 3) in
terms of shape. However, there are some differences between
the overall intensity for each variable and the loadings plot for
the same variable because the individual spectra are normal-
ized while the PC1 loadings graphs were obtained with all
data taken from the reaction. The second PC relates primar-
ily to the change in shape of the spectra during the reaction.
The loadings plots (Fig. 4b and d) show how each variable

F
p

changes relative to the others over the course of the reaction,
with the variables with the largest negative values correspond-
ing to those whose intensity decrease the most during the
course of the reaction. Correspondingly, the variables with
the largest positive values relate to those ones that increase
the most. The first variables are related to reagents and the
last ones represent the product. In the case of the MIR data,
the two wavenumbers with the largest negatives values are
1605 and 1251 cm−1 and are representative of the reagents,
mainly benzophenone. The variable with the highest positive
value (1214 cm−1) accounts primarily for the product. In the
scores plot shown inFig. 5, one can see an increase evolution
from negative to positive with time. The second PC score
increases until the reaction finishes and is a good indication
of the reaction profile.

All the qualitative results obtained from the probes, when
PCA is performed, show the development of the reaction dur-
ing the course of time, being a first indication of the behaviour
of the compounds.

4.3. PLS models of calibration and test set

In order to obtain concentrations profiles for both reagents
and the product during the reaction period it is necessary
to develop an appropriate calibration set. To this purpose, a
p
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ig. 5. PCA scores on the raw data from the reaction obtained with both
robes.
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B 5.3
artial factorial design at five levels was employed.
Using the 25 samples of the calibration set, PLS mo

ere obtained for each compound. For the cross-valid
he c block was used. The significant minimum root m
tandard error of validation value for cross-validation (le
ne out) occurred for benzophenone phenylhydrazone,
ophenone and phenylhydrazine at 7, 6 and 7 PLS co
ents for MIR data and 5, 5 and 5 PLS components for UV
ata respectively. The number of components was chos
raphical investigation of the plot of the RMSECV versus
umber of components. These plots are illustrated inFig. 6.
he relatively high number of PLS components for both M
nd UV/vis data can be explained if one takes into acc

he pure spectral similarity of the three compounds stud
The calibration worked satisfactorily and the predic

esults for the “test set” which had not been used in the
truction of the model are shown inTable 3. The RMSE

able 3
rediction results of test set

rediction step

ompound Probe Test set

E(M) E%

henylhydrazine MIR 0.0113 2.3
UV/vis 0.0214 4.3

enzophenone MIR 0.0062 3.0
UV/vis 0.0101 5.0

enzophenone phenylhydrazone MIR 0.0082
UV/vis 0.0093 6.0
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Fig. 6. Plots of the RMSECV vs. # PCs for both datasets.

values ranged between 0.0062 and 0.0214 mol/L. The pre-
dictions errors are similar in magnitude for both probes, even
though each MIR spectrum was acquired during 5 min to
increase the signal to noise ratio and improve the result. In
the case of the UV, spectra are acquired over a period of ms.

4.4. Kinetic modelling

With the datasets collected during the run of the reaction,
using the initial concentrations and the method shown above,
it is possible to model the concentration profiles of the com-
pounds present in the reaction mixture. Since we are forcing
the concentration profiles to obey a second-order profile, this
method is sometimes also called hard modelling.

The weighed initial concentrations of the reactants are
used as the initial concentration of the compounds, so there
is perfect agreement between the actual measured initial con-
centrations and the ones shown with the hard model.

For the MIR probe we obtain the concentration profiles
seen inFig. 7. The value of the rate constantk obtained was
4.02× 10−4 M−1 s−1. Only spectra acquired after adding the

F hard
m

acid to reaction were used since that is when the reaction
actually started. One can observe that the reaction still had
not reached completion, although it was close.

Using the same procedure with the UV/vis probe the pro-
files shown also inFig. 7were obtained. The value obtained
for the rate constant was 4.34× 10−4 M−1 s−1. The value for
the rate constant is quite similar to the one obtained in the
case of the MIR probe, which means that similar concentra-
tion profiles and comparable information was extracted from
different datasets.

Comparing the profiles from the MIR and UV/vis probes
one can see that they are quite similar. This is a consequence
of the similarity in the rate constants obtained.

4.5. Comparison between PLS and kinetic models

Although soft modelling and hard modelling in essence
rest on quite different properties, their aim is similar and they
should, produce the same numerical results, providing the
assumptions are similar[20].

The data was investigated using both techniques, for both
the UV/vis probe and for the MIR probe. This means that
four concentration profiles were obtained for each compound
present in the reaction mixture. The two profiles from the
kinetic models and two profiles from PLS models obtained
f
t rate
c and
t tra-
t

pro-
fi data
a ree-
m using
a is
o lhy-
d n of
t e it
ig. 7. Concentration profiles obtained with soft modelling (PLS) and
odelling (HM) for both UV/vis and MIR probe.
rom both probes can be obtained as illustrated inFig. 7. Note
hat the profiles from hard modelling involve estimating a
onstant and then producing a profile using this estimate
he initial concentrations. For soft modelling the concen
ions are calculated at each point in time using PLS.

ObservingFig. 7, one can see that the concentration
les for the compounds are quite similar using both
nalytical techniques and both probes. The quality of ag
ent between the methods can be assessed numerically
pproaches of Section2.5, seeTable 4. The highest error
bserved when comparing the PLS profiles for pheny
razine. The reason is the big difference in the estimatio

he initial points in time using PLS. This is expected sinc



A.R. de Carvalho et al. / Talanta 68 (2006) 1190–1200 1199

Table 4
Comparison of the errors computed between the concentration profiles obtained for both modelling and spectroscopic techniques

RMSE (M) UV/vis PLS model MIR PLS model UV/vis kinetic model MIR kinetic model

(a) Phenylhydrazine
UV/vis PLS model 0
MIR PLS model 0.046 0
UV/vis kinetic model 0.020 0.028 0
MIR kinetic model 0.027 0.023 0.007 0

(b) Benzophenone
UV/vis PLS model 0
MIR PLS model 0.016 0
UV/vis kinetic model 0.026 0.031 0
MIR kinetic model 0.020 0.027 0.007 0

(c) Benzophenone phenylhydrazone
UV/vis PLS model 0
MIR PLS model 0.022 0
UV/vis kinetic model 0.003 0.021 0
MIR kinetic model 0.009 0.016 0.007 0

See Eq.(12) for details.

is common in PLS modelling that the first points have a high
error due to mixing and dissolution problems. This prob-
lem also affects the comparison of PLS with kinetic results.
In kinetic modelling the initial concentrations are calculated
from weighing, and therefore in some of the profiles there
is a significant difference in the first points to those from
PLS. Since hard models consider the data as a whole, they
are not so susceptible to this type of error. The lowest errors
are obtained when comparing kinetic profiles. This is due to
the fact that kinetic profiles do not contain oscillations in the
predicted concentrations, since they obey kinetic equations.

Fitting second-order kinetic equations to the PLS model,
we can obtain estimates of the rate constant and have a numer-
ical comparison. For the PLS model of the UV/vis data, a
value of 4.29× 10−4 M−1 s−1 was obtained fork. For MIR,
the fittedk is 3.51× 10−4 M−1 s−1. This demonstrates that
one can monitor this particular reaction using both UV/vis
techniques and MIR techniques and hard and soft modelling.
It also gives confidence in the estimations made since in one
we assumed that we were using a second-order reaction and
in the other one, no assumption was made.

The results are also consistent with the assumptions about
the mechanism of the reaction, both that there is second-
order kinetics and that there are no significant side reactions
or intermediates, otherwise the profiles obtained with both
modelling methods would probably be different. If one is not
s com-
m

5

a in
c eth-
o uip-
m alyze
t

Monitoring a reaction with several probes allows to obtain
increasingly diverse data and to acquire supplementary reac-
tion information. In this paper, it was proven that it is possible
to use different techniques and chemometrics methods and
achieve similar quality of information, allowing us to confirm
the results obtained.

In this paper both PLS and kinetics models were used to
analyze the data. The assumptions made in the hard models
were proven, with not only the graphical visualization of the
spectra taken during the reaction but also with the agreement
between both types of models. It is shown that concentration
profiles can be obtained using both UV/vis data and MIR
data, with the same level of accuracy, even if the acquisition
time differs due to instrumental restrictions.

Chemometrics is a useful tool for monitoring reactions,
obtaining concentration profiles and estimation of reaction
end-points (e.g. at what time a reaction will reach 99%
completion) and product maxima (especially if the prod-
uct is an intermediate in a multistage reaction). Whereas
the acceptance of such techniques in on-line reaction mon-
itoring is developing gradually, new technologies, such as
using more than one probe, pose new challenges to the
analytical chemist who wishes to employ chemometric
techniques.

A

robe
f ter.
A sity
o the
D -
c
U /02)
f unta
d

ure about the reaction mechanism, PLS models are re
ended.

. Conclusion

On-line reaction monitoring is a fast developing are
hemometrics, with increasing number of techniques, m
ds and equipment. Miniaturization of spectroscopic eq
ent allows to acquire a larger amount of data and to an

his data immediately.
cknowledgements

We thank David Baines and Ian Weaver from Spectrap
or loan of the Spectraprobe Linx 5-10ATR spectrome
.R.C. acknowledges GlaxoSmithKline and the Univer
f Bristol for financial support. M.N.S. acknowledges
GICYT (Project BQU2001-1858), the Consejerı́a de Edu
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